Analytic continuation of the Lucas zeta andL-functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

Analytic Continuation of Multiple Zeta Functions

In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.

متن کامل

Analytic Properties of Shintani Zeta Functions

In this note, we describe various theoretical results, numerical computations, and speculations concerning the analytic properties of the Shintani zeta functions associated to the space of binary cubic forms. We describe how these zeta functions almost fit into the general analytic theory of zeta and L-functions, and we discuss the relationship between this analytic theory and counting problems...

متن کامل

Meromorphic Continuation of Dynamical Zeta Functions via Transfer Operators

We describe a general method to prove meromorphic continuation of dynamical zeta functions to the entire complex plane under the condition that the corresponding partition functions are given via a dynamical trace formula from a family of transfer operators. Further we give general conditions for the partition functions associated with general spin chains to be of this type and provide various ...

متن کامل

Analytic Continuation of the Resolvent of the Laplacian and the Dynamical Zeta Function

Let s0 < 0 be the abscissa of absolute convergence of the dynamical zeta function Z(s) for several disjoint strictly convex compact obstacles Ki ⊂ R , i = 1, . . . , κ0, k0 ≥ 3, and let Rχ(z) = χ(−∆D − z2)−1χ, χ ∈ C∞ 0 (R ), be the cut-off resolvent of the Dirichlet Laplacian −∆D in Ω = RN \ ∪0 i=1Ki. We prove that there exists σ1 < s0 such that Z(s) is analytic for Re(s) ≥ σ1 and the cut-off r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2013

ISSN: 0019-3577

DOI: 10.1016/j.indag.2013.04.002